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a b s t r a c t

We consider the optimal rate of approximation by single hidden feed-forward neural networks on the
unit sphere. It is proved that there exists a neural network with n neurons, and an analytic, strictly
increasing, sigmoidal activation function such that the deviation of a Sobolev classW 2

2r (S
d) from the class

of neural networks Φ
φ
n , behaves asymptotically as n−

2r
d−1 . Namely, we prove that the essential rate of

approximation by spherical neural networks is n−
2r
d−1 .

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

In the (d + 1)-dimensional Euclidean space Rd+1, feed-forward
neural networks (FNNs) have attracted the attention of large
number of scholars for their universal approximation property.
There are two main problems concerning the research of FNN
approximation. The first one is called density, which deals with
deciding whether it is possible to approximate the target function
arbitrarily well by choosing suitable network models. The typical
results can be found in Chen and Chen (1995), Chui and Li
(1992), Cybenko (1989), Funahashi (1989), Hornik, Stinchcombe,
andWhite (1990), Leshno, Lin, Pinks, and Schocken (1993) and Park
and Sandberg (1991, 1993) and so on.

The other problem of such approximation called complexity
is to determine how many neurons are necessary to yield a
prescribed degree of approximation, which mainly describes the
relationship among the topology structure of hidden layers, the
approximation ability and the approximation rate. There have been
many studies for this problem. We refer the readers to Barron
(1993), Bulsari (1993), Ferrari and Stengel (2005), Korain (1993),
Maiorov and Meir (1998), Makovoz (1998), Mhaskar and Micchelli
(1995), Suzuki (1998) and Xu and Cao (2004).

Rates of approximation describe the trade-off between the
accuracy of approximation and the complexity of approximating
functions. When such functions belong to a parameterized family,
their complexity can be measured by the lengths of parameter
vectors (depending on the number of variables on the degree
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of polynomials, or on the number of hidden units in neural
networks, etc.). The comparison of rates of approximation between
polynomials and FNNs have been studied by several authors.
For example, in the previous paper (Cao, Lin, & Xu, 2010), we
proved that if the activation function of FNNs is analytic and non-
polynomial, then the approximation rate of FNNs is not lower than
that of the polynomial. On the other hand, Konovalov, Leviatan, and
Maiorov (2008) proved that if the target function is radial, then the
approximation rate of algebraic polynomials is not slower than that
of FNNs in the square integrable function space (indeed, Konovalov
et al., 2008, proved this property for any ridge functionmanifolds).
Similar results canbe found inMaiorov andPinkus (1999),Mhaskar
(1996), Petrushev (1999) and Xie and Cao (2010) and references
therein.

In order to reflect the approximation capability of FNNs more
precisely, it is natural to raise the question: what about the lower
bound of approximation? As regards to this question, there have
been some papers such as Konovalov et al. (2008); Konovalov,
Leviatan, and Maiorov (2009), Maiorov (1999, 2003) and Xu and
Cao (2004) etc. dealing with the lower bound for approximation
by FNNs with various activation functions and target functions. If
the upper and lower bounds are asymptotically identical, then we
call the degree of the bounds as the essential rate of approximation.

On the other hand, many applications such as geophysics,
metrology, graph rendering and so on, the data are usually col-
lected over a sphere or sphere-like area. One then seeks to find a
functional model for the mechanism that generates the data. For
example, themathematical models of some satellite missions such
as GOCE and CHAMP, studying the gravity potential of the earth,
need to solve spherical Fredholm integral equations of the first
kind. Hence, find a tool which can deal with spherical data by us-
ing some special properties of the sphere becomes more and more
important.
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A feasible tool for dealing with spherical data is the spherical
polynomials (SPs). The direct and inverse approximation theorem
of SPs have been studied by several scholars by using some well-
known spherical polynomial operators: Lizorkin and Nikol’skiı̆
(1983) for spherical Jackson operator; Mhaskar, Narcowich, and
Ward (1999), for spherical delay means operator; Wang and Li
(2000) for spherical de la Vallée Poussin operator; Dai and Ditzian
(2008), for the best approximation operator etc.

A major problem of approximation by SPs is the so-called curse
of dimensionality, whereby performance degrades rapidly as the
dimensionality of the problem increases. Several procedures have
been suggested in order to circumvent this problem. A typical
approach on the sphere is the zonal function networks (ZFNs)
formed as

x →

n−
k=1

akφ(⟨ξk, x⟩), (1.1)

where the weights ξk are the site of scattered spherical data, and
⟨x, y⟩ denotes the inner product of (d + 1) dimensional vectors x
and y. In the seminal paper (Sun& Cheney, 1997), the sufficient and
necessary conditions for the density of ZFNs have been deduced.
Twoyears later,Mhaskar et al. (1999) established the complexity of
approximation by ZFNs. They compared the rate of approximation
of ZFNswith that of SPs. They proved that if the activation functions
of the ZFNs satisfy some conditions (such as Gaussian function),
then the upper rate of approximation by ZFNs and SPs are identical
when the neurons of ZFNs n and the degree of SPs s satisfy n ∼

sd, i.e. they proved that the rate of approximation by ZFNs with
Gaussian activation function in a Sobolev W 2

2r (which will be

defined in Section 2) is O

n−

2r
d


. For general target functions and

activation functions, Mhaskar et al. (1999) used the summation
of the best approximation of SPs and a redundancy depending
on the smoothness of the activation functions to bound the best
approximation of ZFNs. Some studies for approximation by ZFNs
on the sphere can also be found in Mhaskar (2006), Mhaskar,
Narcowich, and Ward (2003) and Narcowich, Sun, Ward, and
Wendland (2007).

In this paper, by using the traditional idea of neural networks,
we introduce a new approximant on the sphere called spherical
neural networks (SNNs) formed as

Nφ,n(x) :=

n−
i=1

ciφ(⟨wi, x⟩ + θi), x ∈ Sd, (1.2)

where wi ∈ Rd+1, θi, ci ∈ R. We denote by Φφ,n the collection
of all functions formed as (1.2). It is obvious that ZFN is a special
type of SNN (by setting the thresholds to 0 and restricting the inner
weight to the sphere). Thus results about ZFNs are automatically
results about SNNs. Our main idea of introducing SNNs is that by
adding thresholds to the ZFNs, we can essentially improve the rate
of approximation. More precisely, by using SNNs, we can deduce a
similar result as that of ZFNs by usingmuch less neurons. Indeed, it
will be shown in Section 3 that if n ∼ sd−1, then there exists an SNN
with analytic, strictly increasing and sigmoidal activation function
such that the upper bound of approximation is not larger than that
of SPs. Therefore, the upper bound of approximation by SPs can
deduce the upper bound of approximation by SNNs. For example, if
f ∈ W 2

2r , then the approximation rate of SNNs isO

n−

2r
d−1


, which

is better than that of ZFNs.
The other work of this paper is to study the lower bound of

approximation by SNNs. By help of a lemma proved by Maiorov
(1999) and the Funk–Hecke formula, we will prove that for
arbitrary f ∈ W 2

2r , the lower rate of approximation by SNNs also

asymptotically behaves as n−
2r
d−1 .

The rest of this paper is organized as follows. In the next section,
we will give some preliminaries about the classical spherical
polynomials. The upper bound of approximation by SNNs will be
proved in Section 3, where the relation between approximation by
SNNs and SPswill be also given. The lower bound of approximation
by SNNswill be shown in Section 4,while in the last section,wewill
give some remarks.

To aid our description, we adopt the following convention
regarding symbols. Let C, C1, C2, . . . be constants depending only
on d, whose values will be different at different occurrences, even
within the same formula. The symbol A ∼ Bmeans CA ≤ B ≤ C1A.
The volume of Sd is denoted by Ωd, and it is easy to deduce that

Ωd :=

∫
Sd

dω =
2π

d+1
2

Γ
 d+1

2

 .
2. Notations and preliminaries

At first, we introduce a Sobolev space on the sphere.
Consider the Hilbert space L2(Sd) with norm

‖f ‖2 := ‖f ‖L2(Sd) :=

∫
Sd

|f (x)|2dω(x)
1/2

and inner product

⟨f , g⟩2 :=

∫
Sd

f (x)g(x)dω(x),

where dω(x) is the elementary surface piece on Sd, The Laplace–
Beltrami operator ∆ is defined by (see Freeden, Gervens, &
Schreiner, 1998; Müller, 1966; Wang & Li, 2000)

1f :=

d+1−
i=1

∂2g(x)
∂x2i


|x|:=(x21+x22+···+x2d+1)

1/2=1

, g(x) = f


x
|x|


.

For every positive integer r , we denote by H2
2r(S

d) the class of
functions f for which ∆r f ∈ L2(Sd), where ∆r f := ∆r−1(1f ), r =

2, 3, . . . . And we let W 2
2r be the subset of H2

2r(S
d) with ‖∆r f ‖2 ≤

1, f ∈ H2
2r(S

d). The Sobolev space has beenwidely used to describe
the smoothness of functions. We refer the readers to Chapter 5 of
Freeden et al. (1998) for more details aboutW 2

2r .
Let V be a measurable set. For any two sets W ,U ⊂ V , we

define the deviation ofW from U as

dist(W ,U, V) := sup
f∈W

dist(f ,U, V) := sup
f∈W

inf
g∈U

‖f − g‖V .

We denoted by Hd
k and Πd

s the class of all spherical harmonics
with degree k, and the class of all SPs with degree k ≤ s,
respectively. The space Hd

k can be characterized intrinsically as the
eigenspace corresponding to λk := k(k+ d− 1), k = 0, 1, . . . , i.e.

1Hk = −λkHk, Hk ∈ Hd
k. (2.1)

Since the λk’s are distinct, and the operator is self-adjoint, the
spaces Hd

k are mutually orthogonal. So we have Πd
s =

s
k=0 H

d
k

and L2(Sd) = closure


k H
d
k


. Hence, if we choose an orthonormal

basis {Yk,l : l = 1, . . . , ddk} for each Hd
k , then the set {Yk,l : k =

0, 1, . . . , l = 1, . . . , ddk} is an orthonormal basis for L2(Sd). The
dimension of Hd

k is given by

ddk := dim Hd
k =


2k + d − 1
k + d − 1


k + d − 1

k


, k ≥ 1;

1, k = 0,

and that of Πd
s is

∑s
k=0 d

d
k = dd+1

s ∼ sd.
The addition formula establishes a connection between spher-

ical harmonics of degree k and the Legendre polynomial Pd+1
k

(see Müller, 1966; Wang & Li, 2000):
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ddk−
l=1

Yk,l(x)Yk,l(y) =
ddk
Ωd

Pd+1
k (⟨x, y⟩), (2.2)

where Pd+1
k is the Legendre polynomial with degree k and dimen-

sion d + 1. The Legendre polynomial Pd+1
k can be normalized such

that Pd+1
k (1) = 1, and satisfies the orthogonality relations∫ 1

−1
Pd+1
k (t)Pd+1

j (t)(1 − t2)
d−2
2 dt =

Ωd

Ωd−1ddk
δk,j, (2.3)

where δk,j is the usual Kronecker symbol.
The following Funk–Hecke formula plays an important role in

computing the eigenvalues of kernel φ ∈ L1([−1, 1]) (see Müller,
1966; Wang & Li, 2000)∫

Sd
φ(⟨x, z⟩)Pd+1

k (⟨y, z⟩)dω(z) = B(φ, k)Pd+1
k (⟨x, y⟩), (2.4)

where

B(φ, k) = Ωd−1

∫ 1

−1
Pd+1
k (t)φ(t)(1 − t2)

d−2
2 dt.

From (2.4) it is easy to deduce the following general Funk–Hecke
formula (see Müller, 1966; Wang & Li, 2000), i.e. for arbitrary Hk ∈

Hd
k , we have∫
Sd

φ(⟨x, y⟩)Hk(y)dω(y) = B(φ, k)Hk(x). (2.5)

In order to give the upper bound of approximation by SNNs, we
need the following representation theorem, which was proven by
Cao et al. (2010). For the sake of completeness, we sketch its proof.

Lemma 2.1. Let s ∈ N. Then for any Ps ∈ Πd
s , there exists a set

of points {ad}
dds
k=1 ∈ Sd and a set of univariate polynomials {gj}

dds
k=1

defined on [−1, 1] with degrees not larger than s such that

Ps(x) =

dds−
k=1

gk(⟨ak, x⟩), x ∈ Sd. (2.6)

Sketch of proof. Set {Yj,i : j = 0, 1, . . . , s, i = 1, 2, . . . , ddj } be
an orthonormal basis of Πd

n . Since for any univariate polynomials
gk (k = 1, . . . ,N) defined on [−1, 1] with degrees not larger than
n and any points ak ∈ Sd (k = 1, . . . , dds ),

∑N
k=1 gk(⟨ak, x⟩) ∈ Πd

n .
In order to prove (2.6), it is sufficient to prove that there exist

a set of univariate polynomials {gk}
dds
k=1 defined on [−1, 1] with

degrees not larger than s and a set of points {ak}
dds
k=1 ⊂ Sd such

that the Fourier coefficients related to the orthonormal basis {Yj,i :

j = 0, 1, . . . , n, i = 1, 2, . . . , ddj } of both sides of (2.6) coincide.
If we set


Sd Ps(x)Yj,i(x)dω(x) = Qj,i, then we only need to prove

that there exist a set of univariate polynomials {gk}
dds
k=1 defined on

[−1, 1]with degrees not larger than s and a set of points {ak}
dds
k=1 ⊂

Sd such that∫
Sd

dds−
k=1

gk(⟨ak, x⟩)Yj,i(x)dω(x) = Qj,i,

j = 0, . . . , s, i = 1, . . . , ddj .
It follows from the Funk–Hecke formula (2.5) that∫

Sd

dds−
k=1

gk(ak · x)Yj,i(x)dω(x) =

dds−
k=1

B(gk, j)Yj,i(ak).

If we set

zkmji :=


Yj,i(ak), m = j,
0, m ≠ j, 0 ≤ m ≤ n,
then it is sufficient to prove that there exist a set of points A :=

{a1, a2, . . . , aN} ⊂ Sd and a set of univariate polynomials {gk}
dds
k=1

defined on [−1, 1] with degrees not larger than s such that

s−
m=0

dds−
k=1

zkmji B(gk,m) = Qj,i, j = 0, . . . , n, i = 1, . . . , ddj .

Construct the matrix

Z(A) :=

zkmji
k=1,...,dds , m=0,...,s
j=0,...,s, i=1,...,ddj

,

where (k,m) is the indicator number of the column of the matrix
Z(A), and (j, i) is the indicator number of the row of the matrix
Z(A). If we construct the vectors

B := (B(gk,m))k=1,...,dds , m=0,...,s,

Q := (Qj,i)j=0,...,n, i=1,...,ddj
,

then it is sufficient to prove that there existsA such that the system
of equations with variables B(gk,m)

Z(A)B = Q

is solvable. Then by using the method of Maiorov (2003), we can
deduce (2.6) easily. �

3. Upper bound of approximation

LetC(Sd)be the set of continuous functions on Sd. In this section,
we prove that for any f ∈ C(Sd) and any ε > 0, there exists an SNN,
Nφ,n, with analytic, strictly increasing and sigmoidal activation
function and n ∼ sd−1 neurons such that

‖f − Nφ,n‖ ≤ Cdist(f , Πd
s , C(Sd)) + ε, (3.1)

where ‖ · ‖ denotes the uniform norm on Sd.
The following Lemma 3.1 proved byMaiorov and Pinkus (1999)

will play a crucial role in our proof.

Lemma 3.1. There exists a function φ which is real analytic, strictly
increasing, and sigmoidal satisfying the following: for every g ∈

C([−1, 1]), there exists a sequence of natural number {nk}
∞

k=1 and
three sequences of real number {ank}

∞

k=1, {bnk}
∞

k=1 and {cnk}
∞

k=1 such
that

lim
k→∞

‖g − ankφ(· − 8nk + 1) − bnkφ(· − 8nk + 5)

− cnkφ(· + 4nk + 1)‖C[−1,1] = 0. (3.2)

Now we give the main result of this section.

Theorem 3.1. Let s ∈ N, n ∼ sd−1. Then for any f ∈ C(Sd) and
arbitrary ε > 0, there exists an SNN,

Nφ,n(x) =

n−
k=0

ckφ(⟨wk, x⟩ + bk), wk ∈ Rd+1, bk, ck ∈ R,

where φ is analytic, strictly increasing, and sigmoidal such that

‖f − Nφ,n‖ ≤ Cdist(f , Πd
s , C(Sd)) + ε. (3.3)

Proof. It follows from the representation formula (2.6) that for
arbitrary Ps ∈ Πd

s , there holds

Ps(x) =

dds−
i=1

gi(⟨ξi, x⟩), (3.4)

where gj(j = 1, . . . , dds ) are univariate polynomials defined on

[−1, 1] with degrees not larger than s and {ξi}
dds
i=1 ⊂ Sd. Then we
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use Lemma 3.1 to obtain (3.3). For arbitrary ε > 0, by (3.2), there
exists an analytic, strictly increasing, and sigmoidal function φ and
k0 such that for any k ≥ k0, there holds

|gj(t) − ainkφ(t − 8nk + 1) − binkφ(t − 8nk + 5)

− c inkφ(t + 4nk + 1)| ≤
ε

2dds
. (3.5)

We construct an SNNs, Nφ,n, with n = 3dds ∼ sd−1 neurons as

Nφ,n(x) :=

dds−
i=1

aink0 φ(⟨ξi, x⟩ − 8nk0 + 1)

+ bink0 φ(⟨ξi, x⟩ − 8nk0 + 5)

+ c ink0 φ(⟨ξi, x⟩ + 4nk0 + 1). (3.6)

Then by (3.4)–(3.6), we get

|Ps(x) − Nφ,n(x)| =


dds−
i=1

gi(⟨ξi, x⟩) −

dds−
i=1

aink0 φ(⟨ξi, x⟩ − 8nk0 + 1)

− bink0 φ(⟨ξi, x⟩ − 8nk0 + 5) − c ink0 φ(⟨ξi, x⟩ + 4nk0 + 1)


≤

dds−
i=1

gi(⟨ξi, x⟩) − aink0 φ(⟨ξi, x⟩ − 8nk0 + 1)

− binkφ(⟨ξi, x⟩ − 8nk0 + 5) − c ink0 φ(⟨ξi, x⟩ + 4nk0 + 1)


≤

dds−
i=1

ε

2dds
=

ε

2
.

Thus, we obtain that for arbitrary Ps ∈ Πd
s , there exists an SNN,

Nφ,n, with analytic, strictly increasing, sigmoidal activation func-
tion andn ∼ sd−1 neurons such that for arbitrary ε > 0, there holds

|Ps(x) − Nφ,n(x)| ≤
ε

2
. (3.7)

If we choose Ps(x) satisfying

|f (x) − Ps(x)| ≤ dist(f , Πd
s , C(Sd)) +

ε

2
,

then we have

|f (x) − Nφ,n(x)| ≤ |f (x) − Ps(x)| + |Ps(x) − Nφ,n(x)|

≤ dist(f , Πd
s , C(Sd)) + ε.

This finishes the proof of Theorem 3.1. �

The above Theorem 3.1 uses the best approximation rate of SPs
to describe the approximation rate of SNNs. It can be found that in
order to obtain a prescribed approximation accuracy, the number
of parameters needed in SNNs ismuch less than that of SPs. (Indeed
the number of parameters needed in SNNs is asymptotically as
sd−1 and that of SPs is asymptotically as sd.) Thus it can be seen
that as far as the approximation capacity is concerned, SNNs are
somewhat superior to SPs. The following three corollaries can be
easily deduced from Theorem 3.1 and its proof, for the sake of
brevity, we omit the details.

Corollary 3.1. If the assumptions of Theorem 3.1 are fulfilled, then
for any f ∈ C(Sd), there holds

dist(f , Φφ,n, C(Sd)) ≤ dist(f , Πd
s , C(Sd)). (3.8)
Corollary 3.2. Let s ∈ N, n ∼ sd−1. Then for any f ∈ L2(Sd), there
exists an analytic, strictly increasing, and sigmoidal function φ such
that

dist(f , Φφ,n, L2(Sd)) ≤ dist(f , Πd
s , L

2(Sd)).

The above two corollaries gave a comparison between approx-
imation by SNNs and SPs under different metrics. In order to study
the approximation rate of SNNs, we also need to introduce the ap-
proximation rate of SPs. The upper bound of approximation func-
tions belonging to W 2

2r by SPs has been established by Pawelke
(1972), i.e.

dist(f , Πd
s , L

2(Sd)) ≤ Cs−2r , r ∈ N. (3.9)

This together with Corollary 3.2 yields the following Corollary 3.3.

Corollary 3.3. Let s ∈ N, n ∼ sd−1. Then for any f ∈ W 2
2r , there

exists an analytic, strictly increasing, and sigmoidal function φ such
that

dist(f , Φφ,n, L2(Sd)) ≤ dist(f , Πd
s , L

2(Sd)) ≤ Cn−
2r
d−1 . (3.10)

4. Lower bound of approximation

In this section, motivated by Maiorov (1999), we prove that
the upper and lower rates of approximation by SNNs are identical,
which behave asymptotically as n−

2r
d−1 .

Let the vector set Em consisting of all vectors ε := (ε1, . . . ,
εm),m ∈ N with coordinates ε1, . . . , εm = ±1, i.e.,

Em
:= {ε = (ε1, . . . , εm) : εi = ±1, i = 1, 2, . . . ,m}.

Let m, s, p and q be natural numbers. Let πij(σ ), i = 1, . . . ,m; j =

1, . . . , q be any algebraic polynomials with real coefficients in the
variables σ = (σ1, . . . , σp) ∈ Rp, each of degree s. Construct the
polynomials in the p + q variables b = (b1, . . . , bq) ∈ Rq and
σ = (σ1, . . . , σp) ∈ Rp

πi(b, σ ) =

q−
j=1

bjπij(σ ), i = 1, . . . ,m.

Construct in Rm a polynomial manifold

Pm,s,p,q := {π(b, σ ) = (π1(b, σ ), . . . , πm(b, σ ))

: (b, σ ) ∈ Rq
× Rp

}.

The following Lemma 4.1 was given in Maiorov (1999).

Lemma 4.1. Let m, p, q, s be integers such that p + q ≤ m/2

p log2(4s) + (p + 2) log2(p + q + 1)

+ (p + q) log2


2em
p + q


≤

m
4

. (4.1)

Then there exists a vector ϵ ∈ Em and an absolute constant C > 0
such that

dist(ϵ, Pm,s,p,q, l2) ≥ Cm1/2. (4.2)

Now we state our main result in this section.

Theorem 4.1. Let r ≥ 0, d ≥ 2, then for any φ ∈ L2(R) there exists
a constant C depending only on d such that

dist(W 2
2r , Φφ,n, L2(Sd)) ≥ Cn−

2r
d−1 . (4.3)

Proof. Let n and s be any natural numbers. Set m = dd+1
s . Thus

there exists a constant C1 ≤ 2 such that

m = C1sd. (4.4)
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Consider the set consisting of SPs

Fs,d :=

h(x) =

s−
j=0

ddj−
i=1

ϵ(j, i)Yj,i(x)

 ,

where {ϵ(j, i) : j = 0, . . . , s, i = 1, . . . , dds } ⊂ Em. It is obvious that
Fs,d is a subset of Πd

s , hence it satisfies the well-known Bernstein
inequality (see Wang & Li, 2000)

‖∆rh(·)‖2 ≤ C2s2r‖h(·)‖2. (4.5)

On the other hand, by Parseval equality we have

‖h(·)‖2
2 =


s−

j=0

ddj−
i=1

ϵ(j, i)Yj,i(·)


2

2

=

s−
j=0

ddj−
i=1

|ϵ(j, i)|2 = m.

The above equality together with (4.5) yields that

h∗(x) :=
1

C2s2rm
1
2
h(x) ∈ W 2

2r . (4.6)

At first we estimate the distance from the set Φφ,n to Fs,d

dist(Fs,d, Φφ,n, L2) = sup
h∈Fs,d

inf
g∈Φφ,n

‖h(·) − g(·)‖2.

Let

h(x) =

s−
j=0

ddj−
i=1

ε(j, i)Yj,i(x)

be an arbitrary function from Fs,d and let

g(x) =

n−
k=1

ckφ(⟨wk, x⟩ + bk), wk ∈ Rd+1, bk, ck ∈ R

be an arbitrary function fromΦφ,n. It is obvious thatwe can rewrite
g(x) as

g(x) =

n−
k=1

ckφ(ak⟨xk, x⟩ + bk), xk ∈ Sd, ak, bk, ck ∈ R.

Since φ ∈ L2(R), we have g ∈ L2(Sd), then it follows from Parseval
equality that

‖h(·) − g(·)‖2
2 =


s−

j=0

ddj−
i=1

ϵ(j, i)Yj,i(·) − g(·)


2

2

=

 s−
j=0

ddj−
i=1

ϵ(j, i)Yj,i(·) −

s−
j=0

ddj−
i=1

⟨g, Yj,i⟩Yj,i(·)

−

∞−
j=s+1

ddj−
i=1

⟨g, Yj,i⟩Yj,i(·)


2

2

=

s−
j=0

ddj−
i=1

|ϵ(j, i) − ⟨g, Yj,i⟩2|
2
+

∞−
j=s+1

ddj−
i=1

|⟨g, Yj,i⟩2|
2

≥

s−
j=0

ddj−
i=1

|ϵ(j, i) − ⟨g, Yj,i⟩2|
2.

Fix indices i, j, and consider the inner product ⟨g, Yj,i⟩2. By
Funk–Hecke formula (2.5), we have
⟨g, Yj,i⟩2 =

n−
k=1

⟨ckφ(ak⟨xk, ·⟩ + bk), Yj,i(·)⟩2

=

n−
k=1

Ωd−1

∫ 1

−1
Pd+1
j (t)ckφ(akt + bk)(1 − t2)

d−2
2 dtYj,i(xk).

If we set σk be the (d + 1) × (d + 1) orthogonal matrix with
the corresponding determinant being 1 such that xk = σke, e :=

(0, . . . , 0, 1), and let

bk,l(φ) :=

Ωd−1

∫ 1

−1
Pd+1
j (t)ckφ(akt + bk)(1 − t2)

d−2
2 dt, l = j

0, l ≠ j.

Then we have
s−

l=0

bk,l(φ) = Ωd−1

∫ 1

−1
Pd+1
j (t)ckφ(akt + bk)(1 − t2)

d−2
2 dt,

j = 0, . . . , s.

Thus,

⟨g, Yj,i⟩2 =

n−
k=1

s−
l=0

bk,l(φ)Yj,i(σke). (4.7)

From (4.7) it follows that

inf
g∈Φφ,n

s−
j=0

ddj−
i=1

ϵ(j, i) − ⟨g, Yj,i⟩2
2

= inf
bk,l,σk

s−
j=0

ddj−
i=1

ϵ(j, i) −

n−
k=1

s−
l=0

bk,l(φ)Yj,i(σke)


2

, (4.8)

where the infimum is calculated over all collections of matrices
σ1, . . . , σn, and all collections of b1,0, . . . , bn,s. Obviously, the
dimension of an (d + 1) × (d + 1) orthogonal matrix is (d+1)(d+2)

2 ,
which together with the fact that Yj,i is an SP with degree j, 0 ≤

j ≤ s yields that Yj,i(σke) is an algebraic polynomial with (d+1)(d+2)
2

variables and degree not larger than s. For the sake of brevity, we
set

πj,i(b, σ ) =

n−
k=1

s−
l=0

bk,l(φ)Yj,i(σke)

then πj,i(b, σ ) is an algebraic with degree not larger than s, b ∈

Rn(s+1), σ ∈ R
n(d+1)(d+2)

2 . Therefore, we have

(dist(Fn,d, Φφ,n, L2(Sd)))2

≥ max
ϵj,i∈Em

inf
b∈Rn(s+1),σ∈Rn(d+2)(d+1)/2

s−
j=0

ddj−
i=1

|ϵj,i − πj,i(b, σ )|2.

Since m = dd+1
s we can rearrange the sequence {(j, i), j =

0, . . . , s, i = 1, . . . , ddj } as {k}mk=1. Thus

(dist(Fn,d, Φφ,n, L2(Sd)))2

≥ max
ϵk∈Em

inf
b∈Rn(s+1),σ∈Rn(d+2)(d+1)/2

m−
k=1

|ϵk − πk(b, σ )|2. (4.9)

Let p = n(d + 2)(d + 1)/2, q = n(s + 1) and

Pm,s,p,q = {π(b, σ ) = (π1(b, σ ), . . . , πm(b, σ ))

: (b, σ ) ∈ Rq
× Rp

}.
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Note that m = C1sd. For s ≥ 4d2, we set n = C3sd−1, where
C3 :=

C1
2000ed3

. Then

p + q =
n(d + 2)(d + 1)

2
+ n(s + 1)

≤ 2n(s + 1) ≤ 2C3sd−1(s + 1) ≤
C1

2
sd =

m
2

,

p log2(4s) =
n(d + 2)(d + 1)

2
log2(4s) ≤ 2d2n log2(4s)

≤ 8d2C3sd ≤
C1sd

12
=

m
12

,

(p + 2) log2(p + q + 1) =


n(d + 2)(d + 1)

2
+ 2


× log2


n(d + 2)(d + 1)

2
+ n(s + 1) + 1


≤ 5d2n log2(2d

2n + 2ns) ≤ 5d2C3sd−1 log2(4C3sd)

≤ 20C2
3d

3sd

≤
C1sd

12
=

m
12

,

and

(p + q) log2


2em
p + q


=


n(d + 2)(d + 1)

2
+ n(s + 1)


log2

×


2em

n(d+2)(d+1)
2 + n(s + 1)



≤ (4d2n + n(s + 1))2 log2


2eC1sd

ns

 1
2

≤ (8C3sd)
2e

√
C1

√
C3

≤
C1sd

12
=

m
12

.

Thus the assumptions of Lemma4.1 are fulfilled. Then from (4.2)
we have

dist(Fn,d, Φφ,n, L2) ≥ Cm1/2
≥ Csd/2. (4.10)

From (4.6) and (4.10), it follows that

dist(W 2
2r , Φφ,n, L2(Sd)) ≥ dist(C−1

2 s−2rm−
1
2 Fn,d, Φφ,n, L2(Sd))

≥ Cs−2r−d/2dist(Fn,d, Φφ,n, L2(Sd)) ≥ Cs−2r−d/2
× sd/2

= Cs−2r
∼ n−2r/(d−1).

This completes the proof of Theorem 4.1. �

5. Conclusions and remarks

In Section 3, we got the upper bound of approximation by SNNs
with analytic, strictly increasing, sigmoidal activation function. In
Section 4 we also deduce the lower bound of approximation by
SNNs with square integrable activation function. Combining these
we obtain the following Theorem 5.1.

Theorem 5.1. If n ∼ sd−1, then there exists a φ : R → R being
analytic, strictly increasing, sigmoidal and square Lebesgue integrable
such that

dist(W 2
2r , Φφ,n, L2(Sd)) ∼ dist(W 2

2r , Πd
s , L

2(Sd)) ∼ n−
2r
d−1 . (5.1)

From Theorem 5.1 it follows the following two assertions. On
the one hand, if the target functions satisfying some smoothness
conditions, then the approximation rate of SNNs is faster than that
of SPs. On the other hand, the approximation rate of SNNs we
deduced cannot be improved. In other word, this rate is optimal.
As shown above, the essential rate of approximation by SNNs
and that by SPs are identical in W 2

2r if the number of neurons
n and the degree of SPs s satisfy n ∼ sd−1. Hence, as tools of
dealing with spherical data, the SNNs constructed in this paper
possess the following three advantages. The first one is that SNNs
have superior approximation ability to SPs, since only O(sd−1)
parameters are used in SNNs to get the approximation rate O

 1
s


while which of SPs are O(sd). The second one is that there exist
some fast algorithms such as backprogram (BP) and extreme
learning machine (ELM) to compute the parameters of SNNs.
The third one is that SNNs are linear combinations of univariate
functions, thus they provide a possibility to circumvent the curse
of dimensionality.

We are also interested in finding a larger space thanW 2
2r , which

also satisfies (5.1). We consider a subset of L2(Sd), B2r , which has
some properties same as the Besov space. It was stated in Section 2
that {Yj,i, i = 1, . . . , ddj } is orthogonal basis of H

d
j . For any natural

N we denote the set of multi-indices Ξ as

Ξ := {(j, i) : j = 2N
+ 1, . . . , 2N+1, i = 1, . . . , ddj }.

Introduce the subspace

ΨN := span{Yj,i : (j, i) ∈ ΞN}.

Let

G2r
N :=

 −
(j,i)∈ΞN

C(j, i)Yj,i ∈ ΨN :

 −
(j,i)∈Ξ

|C(j, i)|2
1/2

≤ 2−2rN

 .

Then we define B2r as

B2r
:=


f : f =

∞−
N=0

fN , fN ∈ Gr
N ,N = 0, 1, . . .


.

For every f ∈ B2r it is not difficult to prove that the class B2r is
essentially equivalent to the class F r , consisting of all functions f
for which the best approximation by SPs of degree 2N satisfies the
inequality

dist(f , Πd
2N , L2) ≤ 2−2rN (N = 0, 1, . . .).

Then by (3.1) we know thatW 2
2r ⊂ B2r , thus we have

dist(W 2
2r , Φφ,n, L2) ≤ dist(B2r , Φφ,n, L2). (5.2)

Moreover, from the definition of B2r , we obtain that

dist(B2r , Πd
s , L

2) ≤ Cs−2r . (5.3)

Thus by (5.1)–(5.3) we obtain

Theorem 5.2. Under the assumptions of Theorem 5.1, we have

dist(B2r , Φφ,n, L2) ∼ dist(B2r , Πd
s , L

2) ∼ n−
2r
d−1 . (5.4)

The above theorems give some theoretical analysis of the SNN
method. It has been shown that by using SNN, the approximation
rate can be essentially improved. Now we turn to state some
potential applications of the SNN method. It can be found in
Freeden and Perevrzev (2001) and Freeden et al. (1998); Freeden,
Glockner, and Thalhammer (1999); Freeden, Michel, and Nutz
(2002) etc. that in order to study the gravity potential of the earth
by the high–low GPS satellite and satellite tracking approach, it is
sufficient to solve a spherical Fredholm integral equation of the
first kind, i.e.
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∫
Sd

f (y)k(x, y)dω(y) = g(x), (5.5)

where k(x, y) is the radial kernel of the first kind (see Chapter
5 of Freeden et al. (1998) or Freeden et al. (1999)). By using
the well-known collocation method with the assumption that the
measurements are made in {xj, g(xj)}mj=1, ones need to solve the
following system of equations∫

Sd
f (y)k(xj, y)dω(y) = g(xj), j = 1, . . . ,m. (5.6)

By the proposed SNNmethod, we can first approximates the target
potential function f (y) by SNN, i.e.

n−
i=1

ciφ(⟨wi, y⟩ + θi). (5.7)

Thus the purpose of the high–low GPS satellite and satellite track-
ingmission is to compute the parameter of the SNN (5.7). It follows
from (5.6) that the parameters of the SNN satisfy
n−

i=1

ci

∫
Sd

φ(⟨wi, y⟩ + θi)k(xj, y) = g(xj), j = 1, . . . ,m.

Then by using the well-known spherical cubature formula
(Mhaskar et al., 1999), the parameters of the SNN satisfy

n−
i=1

ci
N−

k=1

λkciφ(⟨wi, zk⟩ + θi)k(xj, zk) ≍ g(xj),

j = 1, . . . ,m, (5.8)

where {zk}Nk=1 is the set of cubature points, N is a natural number,
{λk}

N
k=1 is the set of cubature weights and ak ≍ b denotes that

limk→∞ ak = b. All of cubature points and cubature weights can
be deuced by some algorithms (Gia & Mhaskar, 2008). Therefore,
the parameters of the SNN can be solved from (5.8), and the well-
known ELM algorithm (Zhu, Qin, Suganthan, & Huang, 2005) can
do it directly.
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